US009330105B1

a2 United States Patent 10) Patent No.: US 9,330,105 B1
Duprey et al. 45) Date of Patent: May 3, 2016
(54) SYSTEMS, METHODS, AND COMPUTER 6,349,372 B1* 2/2002 Benveniste et al. 711/159
READABLE MEDIA FOR LAZY 6,360,300 B1 3/2002 Corcoran et al.
6,442,659 B1* 8/2002 Blumenau 711/162
COMPRESSION OF DATA INCOMING TO A 7702873 B2 4/2010 Griess et al.
DATA STORAGE ENTITY 7,814,128 B2 1012010 Silvers etal.
8,140,821 Bl 3/2012 Raizen et al.
(75) Inventors: Dennis Duprey, Raleigh, NC (US); 8,359,444 B2* 1/2013 Arakawa 711/165
Mayank Ajmera, Morrisville, NC (US); 8,392,382 B2* 3/2013 Marwah ctal. 707/693
e y ’ 8,886,909 Bl 11/2014 De Forest et al.
Derek Scott, Morrisville, NC (US) 8,924.681 Bl 12/2014 Throop et al.
. . . 2004/0054850 Al 3/2004 Fisk
(73) Assignee: EMC Corporation, Hopkinton, MA 2006/0010290 Al 1/2006 Sasamoto
(as) 2007/0005625 Al* 1/2007 Lekatsasetal. 707/101
2007/0150690 Al 6/2007 Chen et al_.
(*) Notice: Subject to any disclaimer, the term of this 2008/0066069 Al* 3/2008 Verbowski etal. ... 718/102
patent is extended or adjusted under 35 2009/0106281 Al* 4/2009 Marwahetal. 707/101
U.S.C. 154(b) by 393 days. (Continued)
(21) Appl. No.: 12/822,173 OTHER PUBLICATIONS
(22) Filed J 23. 2010 Final Office Action for U.S. Appl. No. 12/826,385 (Sep. 10, 2013).
iled: un.
’ (Continued)
Related U.S. Application Data
(60) Provisional application No. 61/332,622, filed on May Primary Examiner — Jay Morrison . .
7.2010. (74) Attorney, Agent, or Firm — Jenkins, Wilson, Taylor &
’ Hunt, PA.
(51) Imt.ClL
GO6F 17/30 (2006.01) 7 ABSTRACT
GOGF 12/02 (2006.01) Systems, methods, and computer readable media for lazy
(52) US.CL compression of data incoming to a data storage entity are
CPC GOG6F 17/30153 (2013.01); GOGF 12/0246 disclosed. According to one aspect, a method for lazy com-
(2013.01) pression of data incoming to a data storage entity includes
(58) Field of Classification Search defining at least a portion of the data storage area within the
None data storage entity as a compressed logical unit for storing at
See application file for complete search history. least some data in compressed form; receiving a command to
write data to the compressed logical unit, and, in response to
(56) References Cited receiving the command to write data to the compressed logi-

U.S. PATENT DOCUMENTS

5,140,592 A * 8/1992 Idlemanetal. 714/5.11

5,459,850 A * 10/1995 Clayetal. 71171
6,192,432 B1* 2/2001 Slivkaetal. 710/68
6,310,563 B1* 10/2001 Haretal. 341/50

COMPRESSION OPERATIONS LIFECYCLE

INITIAL COMPRESSION
» TURN ON COMPRESSION
« COMPRESS ENTIRE LUN

Q

DECOMPRESSION
+ TURN OFF COMPRESSION
» DECOMPRESS ENTIRE LUN

A
-

TRIGGERED BY THRESHOLD

110

UNCOMPRESSED

DECOMPRESSED

RECOMPRESSION

cal unit, writing the data in uncompressed form; and moni-
toring for a trigger condition, wherein, upon detection of a
trigger condition, at least a portion of the uncompressed data
within the compressed logical unit is compressed.

22 Claims, 8 Drawing Sheets

=uncompressen [l = compresseD
100%

TRIGGER 2:

DATA
>B80% ::APACIT»\' COMPRESS |

c INFTIAL X

A | coMPRESsION COMPRESS

P .

A TRIGGER 1:

c > 50% CHANGI

1

T

Y 7

T8

T TI0O T4 T2 T13
TIME

CHANGE LUN FROM
"UNCOMPRESSED” TYPE

TO “COMPRESSED" TYPE

COMPRESSION
TRIGGERED BY
CHANGE THRESHOLD

COMPFRESSION
TRIGGERED BY
CAPACITY THRESHOLD

US 9,330,105 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2009/0292870 Al 11/2009 Sambe et al.
2009/0307424 Al 12/2009 Galloway et al.

OTHER PUBLICATIONS

Non-Final Office Action for U.S. Appl. No. 12/826,385 (Mar. 5,
2013).

Interview Summary for U.S. Appl. No. 12/826,385 (Mar. 1, 2013).
Commonly-assigned, co-pending U.S. Appl. No. 12/826,385 for
“Systems, Methods, and Computer Readable Media for Compressing
Data at a Virtually Provisioned Storage Entity” (Unpublished, filed
Jun. 29, 2010).

Non-Final Office Action for U.S. Appl. No. 12/751,685 (Apr. 10,
2014).

Non-Final Office Action for U.S. Appl. No. 12/826,385 (Feb. 20,
2014).

Final Office Action for U.S. Appl. No. 12/100,514 (Feb. 6, 2014).
Non-Final Office Action for U.S. Appl. No. 12/826,385 (Jan. 2,
2015).

Final Office Action for U.S. Appl. No. 12/826,385 (Aug. 8, 2014).
Applicant-Initiated Interview Summary for U.S. Appl. No.
12/826,385 (Jun. 26, 2014).

Lacroix, “EMC Introduces New EMC CLARIION CX4 Series with
Next Generation Architecture,” EMC Press Release, http://www.
emc.com/about/news/press/2008/20080805-01 htm, pp. 1-5 (Aug. 5,
2008).

Applicant-Initiated Interview Summary for U.S. Appl. No.
12/826,385 (Apr. 6, 2015).

McGaughey, Katryn, “New Levels of EMC Midrange Storage Effi-
ciency and Simplicity Accelerate Journey to The Private Cloud,”
EMC Press Release, pp. 1-4, http://www.emc.com/about/news/
press/2010/20100511-02.htm, (May 11, 2010).

Sakac, Chad, “EMC Unified Storage—Next Generation Efficiency
Details,” Virtual Geek blog, pp. 1-15, http://virtualgeek typepad.
com/virtual_geek/2010/05/emc-unified-storage-next-generation-
efficiency-details.html, (May 11, 2010).

Non-Final Office Action for U.S. Appl. No. 12/826,385 (Jul. 31,
2015).

* cited by examiner

US 9,330,105 B1

Sheet 1 of 8

May 3, 2016

U.S. Patent

V1 DId

ATOHSHHHL A8 A34H499Id 1L

T

901 \@
Q3SSIINODAA

NAT JHILNT SS3HdNOD3A @
NOISSTddNOD 440 NdNL

NOISS3ddINODEd

NOISSd4dINOO4d

Dm_.wwm_N_n_ NOD

)
..4

\\\\|]/

d4SS3ddINOONN

T

/
—
001

NNT FHILNT SS3FHdNOD
NOISSTHdNOD NO NAHNL e

NOISS3HdINOD TVILINI

A10A034d1T SNOILVHAdO NOISS3ddINOD

U.S. Patent May 3, 2016 Sheet 2 of 8 US 9,330,105 B1

TIME

LRI
Eotatote!
SES

1
|
|
| s
1 —
— TN

CRRARARKS

»<f> <>< KOS

DELETED
DATA

l
l
!
!
l

[m)]
0
% ZEI
L” W S B
m) E ‘ ’/ \4\ ?\\ wmﬂ:
L = wx T
2] eaeEeC AR SR o -
i ° N He sok
o e % ; 5 Z05
% i OFZ
8) {VI ‘\\\\\;gg(‘fv SR ‘(, 71\’ t: 6
" Ng ! 5 E%)g%%% R
o
m m
i 90 \\> e -
r =
- Q = .
© 7 e
A a %X)\A%%%}:;Af\:\— Om% U
ﬂﬁ/ e zon
= qre B
o) . =
o O
& \ & 29%
ODCZ
OF <
€I
@]

TRIGGER 1
> 50% CHA

T1 /‘ T2 T3 T4 T5 T6 T7‘ T8 T9 T1 0 T T1 2 T13

INITIAL
COMPRESSION

7777
//// = UNCOMPRESSED
NG

AN

O <CO —+F >

CHANGE LUN FROM
“‘UNCOMPRESSED” TYPE
TO “COMPRESSED” TYPE

100% +

U.S. Patent May 3, 2016 Sheet 3 of 8 US 9,330,105 B1

204
/

200

202
CONTROLLER HOST

206 N
|
!
l

DATA
STORAGE
DEVICES

1GB
SLICES

1GB SLICE
ALLOCATIONS

MAPPED

210\
LUNS

MLU1

SLICE 4 SLICE 1

8 1GB SLICES

-~ @
=
A

8
KIK

8KB MAPPING
ALLOCATION UNITS

216\ MLU1 LOGICAL
A B|C|D| - EIF G BLOCK ADDRESS
SPACE

LBA O T 1GB 2GB z

U.S. Patent May 3, 2016 Sheet 4 of 8 US 9,330,105 B1

Ve o I <
—t [} (o] (]
(@] o o (38} a
- - - - i
@) Q & &) 2
U ISR PR I] I G i N
Il
)
: w
N 7
‘(: ‘SQKX; f‘i A s K\QK (, 3 u_]
. N -
N = :
8 s 0
. \\ﬁ OGO ! —
Ll i By S
X \\'. \ N % =
o <§) .
O o < ,
I e B 8
NE 3
5 N 0
0.
5 ___&\ =
< 3
— = > o~ %
A 9 IS} &) i
Bui 8w &3 % o
73] |
2230 & 0 " N
LA O = & o
CwZu Q = =
BBNLX & S -’
oz = L
__JMQD el 0 -
S855 = i <
2<5 Z <
=

US 9,330,105 B1

Sheet 5 of 8

May 3, 2016

U.S. Patent

v "DId

(SIOIATA FADVHOLS HLIM STOVAEILND WHY ¥IMOT

v.iva H ;;;;;;;;;;;; _
i " L _000L
-« 1 @
0zh | S1odrdonid | HIOVYNVYI
IWILSAS it | 100d oTh
/] S ||| e L OO0
- _ e
_ $L103rd0 100d !
4 81y -oooooiio
|
- OO0 i HIDVYNYIN
HOLYNIQH00D O/l X S103r40 SN | S -
0y~ g) 1414 wnunnnuununun
9Tl i
S OO0 il uzovwwn
] M
v /| sLo3rdo N | L N\ g0p
1) § e
HOLYNIAHO0D < ANIONAE < > 193rgo 39 HADVYNVIN
NOISSTHAINOD | | NOISSIHINOD NOISSTHANOD [\ 0
A
’TH 90 HIOVNYIN | ounvi
A AN | SRS
vov -~ vTb J1VIS Ty
00%
(O/1 LSOH S3IAIFOTH) WHV ¥3ddn
>__20¢

U.S. Patent May 3, 2016 Sheet 6 of 8 US 9,330,105 B1

DETERMINE TARGET OF /0 COMMAND |/ 292
(IDENTIFY TARGET CHUNK)

504 READ

READ OR
WRITE?

506

WRITE ALL

OF CHUNK?
Y Y 508
UNCOMPRESS |/
TARGET CHUNK
-
Y
PERFORM I/O COMMAND ON TARGET //5”)
CHUNK

FIG. 5

U.S. Patent May 3, 2016 Sheet 7 of 8 US 9,330,105 B1

TRIGGER
CONDITION?

602 .
SELECT NEXT CHUNK

604

IS CHUNK
COMPRESSED?

606 .
COMPRESS CHUNK

COMPRESSED
ENOUGH?

ORE CHUNK
AVAILABLE?

612 N
GENERATE WARNING

FIG. 6

U.S. Patent May 3, 2016 Sheet 8 of 8 US 9,330,105 B1

700 \ | DESIGNATE A COMPRESSED LOGICAL UNIT AS
BEING SUBJECT TO LAZY DECOMPRESSION

:

702 . RECEIVE A COMMAND TO READ DATA FROM
OR WRITE DATA TO A TARGET PORTION OF
THE COMPRESSED LOGICAL UNIT

704
IS TARGET PORTION
COMPRESSED?

706 DECOMPRESS ONLY THE COMPRESSED
TARGET PORTION AND DON'T DECOMPRESS
THE NON-TARGET PORTIONS

)

708\ | PERFORM THE READ OR WRITE COMMAND ON
THE UNCOMPRESSED TARGET PORTION

Ey
o
o
~1

US 9,330,105 B1

1

SYSTEMS, METHODS, AND COMPUTER
READABLE MEDIA FOR LAZY
COMPRESSION OF DATA INCOMING TO A
DATA STORAGE ENTITY

PRIORITY CLAIM

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 61/332,622, filed May 7, 2010;
the disclosure of which is incorporated herein by reference in
its entirety.

TECHNICAL FIELD

The subject matter described herein relates to methods and
systems for managing data in data storage devices. More
particularly, the subject matter described herein relates to
systems, methods, and computer readable media for lazy
compression of data incoming to a data storage entity.

BACKGROUND

To reduce the storage space taken by data that is stored on
a data storage device, the data may be compressed at the time
of writing, e.g., compressed data, rather than uncompressed
data, is written to the data storage device.

Some algorithms perform compression by replacing often-
repeated sequences of text or data with substitute placeholder
that is smaller in size than the sequence that it replaces. The
larger the sequences that are replaced, the more efficient the
algorithm becomes, allowing the compressed file to be
smaller and smaller relative to the size of the uncompressed
file. Such compression algorithms will first search the entirety
of'the data to be compressed, called the compression domain,
to find the largest sequences that are repeated within the
compression domain. The larger the compression domain, the
more opportunities there are for the compression algorithm to
find larger repeating sequences. For this reason, compression
algorithms tend to be more efficient as the compression
domain gets larger.

However, in systems where the content of the compression
domain changes, the compressed data must be decompressed,
modified, and recompressed. For this reason, system perfor-
mance tends to be less efficient as the compression domain
gets larger, because a change to any portion of a large com-
pression domain requires that the entire compression domain
be decompressed, modified, and recompressed. If, instead,
the dataset is divided into smaller compression domains, a
change to one portion of the dataset requires decompression
and recompression of a smaller portion of the dataset.

Choosing the size of the compression domain is therefore a
balance between compression efficiency and system perfor-
mance. Choosing the boundaries of the compression domains
can also have a significant effect on compression efficiency
and system performance. A compression domain may be very
large if the data within its boundaries—i.e., the contents of
that compression domain—do not change very often.

One approach to selecting the boundary of a compression
domain is to attempt to encompass data that will be likely to
change together or not change at all. That is, if one portion of
the data within the compression domain changes, other por-
tions of the data within the compression domain are also
likely to change, resulting in a decompress-modify-modify-
modify-recompress strategy. This increases efficiency
because the decompress and recompress operations are typi-
cally more resource-intensive than the modify operations. In
other words, if the system has to go to the trouble of decom-

20

40

45

50

55

2

pressing and recompressing, the overhead caused by multiple
modifications is relatively small in comparison.

One conventional example of this approach is what is
herein referred to as “file-based” compression, in which the
file construct is the boundary of the compression domain: one
file is one compression domain, another file is another com-
pression domain, and so on. When one portion of a file
changes, it is likely that other portions of the same file also
change, but does not increase the likelihood that another file
will also change.

There are disadvantages to file-based compression, how-
ever. Storage devices may not operate at the file level, and thus
may not even be aware of the file construct. For example, a
hard disk drive may respond to requests for logical blocks of
available storage space, without knowing to which file, if any,
those logical blocks belong. Thus, file-based compression
cannot be implemented by a low level entity, such as the
storage device, but must be controlled by a higher-level entity,
i.e., one that is aware of the file structure and the mapping of
file to logical or physical addresses within the storage device.
In file-based compression, the file itselfis compressed, but the
meta-data that describes the file or its location, such as the
directory entry for the file, is not compressed. For this reason,
the file contents must be compressed before being sent to the
data storage device: the data storage system receives com-
mands to write the already compressed data to the data stor-
age device. Furthermore, the file system must maintain infor-
mation with each file to indicate whether the file data that is
stored on the data storage is device is compressed or uncom-
pressed data.

Another conventional approach is for the compression
domain to be equal to the unit of reservation or unit of allo-
cation used by the data storage system. For example, multiple
data storage devices may collectively provide a pool of data
storage blocks that may be allocated to logical units or
reserved by processes. In this scenario, each logical unit or
portion thereof may be a separate compression domain.
Under this approach, the compression domain is not based on
a storage block’s membership in a file, but on the storage
block’s membership with a unit of reservation or a unit of
allocation. This approach has the advantage that compression
can be performed at a low level, e.g., by the allocation or
reservation entity or even by the storage device itself, without
having to know the higher-level file or directory structures.
Furthermore, the file system operates as if every file is uncom-
pressed, and will send and receive uncompressed file data,
which is silently compressed before write to the data storage
device and uncompressed upon read from the data storage
device.

However, there are disadvantages to this approach, as well.
In systems where the logical unit has been selected as the
compression domain, any write into the logical unit can
potentially require (and probably will require) the decom-
press-modify-recompress operation to be performed. In addi-
tion, regardless of the size of the compression domain, the
decompress and recompress steps are resource-intensive (and
therefore also time-intensive). Furthermore, the compression
operation is multiple times more resource intensive than the
decompression operation. For systems that perform multiple
decompress-modify-recompress operations, this can cause a
severe bottleneck in performance when reading from and
writing to a compressed logical unit.

Accordingly, in light of these disadvantages associated
with conventional methods for compression of data stored
within a data storage device, there exists a need for systems,
methods, and computer-readable media for lazy compression
of data incoming to a data storage entity.

US 9,330,105 B1

3
SUMMARY

According to one aspect, the subject matter described
herein includes a method for lazy compression of data incom-
ing to a data storage entity. The method includes defining at
least a portion of the data storage area within the data storage
entity as a compressed logical unit for storing at least some
data in compressed form. A command to write data to the
compressed logical unit is received, and, in response to
receiving the command to write data to the compressed logi-
cal unit, the data is written to the compressed logical unit in
uncompressed form. The method also includes monitoring
for a trigger condition, and, upon detection of a trigger con-
dition, compressing at least a portion of the uncompressed
data within the compressed logical unit.

According to another aspect, the subject matter described
herein includes a method for lazy decompression of a com-
pressed portion of a data storage entity. At a data storage
entity having at least a portion of the data storage area within
the data storage entity designated as a compressed logical unit
for containing data in compressed form, the compressed logi-
cal unit is designated as being subject to lazy decompression.
A command to read data from or write data to a compressed
target portion of the compressed logical unit is received. In
response to receiving the command, the compressed target
portion is decompressed, and the read or write command is
performed on the uncompressed target portion. Compressed
portions of the compressed logical unit that are not the target
of any read or write command are not decompressed.

According to another aspect, the subject matter described
herein includes a system for lazy compression of data incom-
ing to a data storage entity. The system includes multiple data
storage devices having data storage space for storing data, the
collective data storage space being divided into a plurality of
slices for allocation to at least one compressed logical unit for
storing at least some data in compressed form. The system
includes a first module for receiving a command to write data
to the compressed logical unit, and, in response to receiving
the command to write data to the compressed logical unit,
writing the data to the compressed logical unit in uncom-
pressed form. The system includes a second module for moni-
toring for a trigger condition, and, upon detection of a trigger
condition, compressing at least a portion of the uncompressed
data within the compressed logical unit.

The subject matter described herein for lazy compression
of'data incoming to a data storage entity may be implemented
in hardware, software, firmware, or any combination thereof.
As such, the terms “function” or “module” as used herein
refer to hardware, software, and/or firmware for implement-
ing the feature being described. In one exemplary implemen-
tation, the subject matter described herein may be imple-
mented using a computer readable medium having stored
thereon computer executable instructions that when executed
by the processor of a computer control the computer to per-
form steps. Exemplary computer readable media suitable for
implementing the subject matter described herein include
non-transitory computer-readable media, such as disk
memory devices, chip memory devices, programmable logic
devices, and application specific integrated circuits. In addi-
tion, a computer readable medium that implements the sub-
ject matter described herein may be located on a single device
or computing platform or may be distributed across multiple
devices or computing platforms.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the subject matter described
herein will now be explained with reference to the accompa-
nying drawings, wherein like reference numerals represent
like parts, of which:

10

15

20

25

35

40

45

55

60

65

4

FIG. 1A is a block diagram illustrating a compression
operations lifecycle according to an embodiment of the sub-
ject matter described herein;

FIG. 1B is a bar graph illustrating the principle of operation
of'lazy compression according to an embodiment of the sub-
ject matter described herein;

FIG. 2 is block diagram illustrating an exemplary system
for lazy compression of data incoming to a data storage entity
according to an embodiment of the subject matter described
herein;

FIG. 3 illustrates an exemplary logical unit that has been
divided into compression domains, called chunks, according
to an embodiment of the subject matter described herein;

FIG. 4 is ablock diagram illustrating a controller for imple-
menting an exemplary system for lazy compression of data
incoming to a data storage entity according to another
embodiment of the subject matter described herein;

FIG. 5 is a flow chart illustrating an exemplary process for
lazy compression of data incoming to a data storage entity
according to an embodiment of the subject matter described
herein;

FIG. 6 is a flow chart illustrating another exemplary pro-
cess for lazy compression of data incoming to a data storage
entity according to an embodiment of the subject matter
described herein; and

FIG. 7 is a flow chart illustrating an exemplary process for
lazy decompression of a compressed portion of a data storage
entity according to an embodiment of the subject matter
described herein.

DETAILED DESCRIPTION

In accordance with the subject matter disclosed herein,
systems, methods, and computer readable media are provided
for lazy compression of data incoming to a data storage entity.
When writing data to a compressed logical unit, or modifying
data within the compressed logical unit, data is not written to
the logical unit in compressed form, but is instead written to
the logical unit in uncompressed form, and compressed when
and if necessary. Rather than a file-based compression
domain, block-based compression domains are used. Rather
than defining the compression domain to be the size of the
entire logical unit, a single logical unit may include multiple
compression domains.

Reference will now be made in detail to exemplary
embodiments of the present invention, examples of which are
illustrated in the accompanying drawings. Wherever pos-
sible, the same reference numbers will be used throughout the
drawings to refer to the same or like parts.

FIG. 1A is a block diagram illustrating a compression
operations lifecycle according to an embodiment of the sub-
ject matter described herein. In FIG. 1A, a volume of data
storage, such as a logical unit, may begin in an uncompressed
state 100, meaning that data contained within the volume, if
any, is not compressed.

Upon initiation of an initial compression 102, compression
for the volume is turned on, meaning that all incoming data is
at least potentially subject to compression. If the volume
already contains uncompressed data, the data on that volume
is compressed. The result of initial compression 102 is the
creation of a volume in a compressed state 104. This volume
will be subject to recompression 106 in response to the detec-
tion of certain triggers, such as the detection of a threshold
condition. The volume in compressed state 104 may be
recompressed multiple times.

Upon initiation of a decompression 108, such as if the
volume type is changed to uncompressed type or if the vol-

US 9,330,105 B1

5

ume is otherwise converted to an uncompressed volume,
compression is turned off for incoming data, and any data
currently existing within the volume is decompressed. As a
result of decompression 108, the volume is decompressed
110, e.g., the volume returns to the uncompressed state. In
data storage systems that implement lazy compression
according to an embodiment of the subject matter described
herein, recompression step 106 may be deferred, perhaps
indefinitely. An example of this behavior is illustrated in FIG.
1B.

FIG. 1B is abar graph illustrating the principle of operation
of'lazy compression according to an embodiment of the sub-
ject matter described herein. In FIG. 1B, the Y axis indicates
the capacity of an example logical unit and how the utilization
of that capacity changes over time, which is shown on the X
axis. The state of the logical unit is shown at various times
labeled T1 through T13. At time T1, the logical unit contains
only uncompressed data, and is at approximately 75% utili-
zation. Between time T1 and T2, the logical unit is changed
from an “uncompressed” type, i.e., one that stores only
uncompressed data, to a “compressed” type, i.e., one that
stores compressed data but also may store uncompressed data
according to the lazy compression approach described herein.
As a result of the change from uncompressed type to com-
pressed type, at time T2, all of the data in the logical unit has
been compressed, to approximately 25% utilization.

From this point in time, additional data may be written to
the logical unit, either as a result of new data being stored on
the logical unit or as a result of existing data being modified.
Thus, at time T3, T4, and T5, additional data is written to the
logical unit, but because the logical unit employs lazy com-
pression, the data is written in uncompressed form and the
logical unit is not recompressed until a trigger condition
occurs. Time T5 illustrates one type of trigger condition, a
change in the utilization. In the example shown in FIG. 1, at
time T5 the utilization of the logical unit changes by more
than 50% from the previous utilization. That is, the amount of
data stored in the logical unit at time T5 is more than 150% of
the amount of the data that was stored in the logical unit at
time T4. As aresult of this change threshold trigger condition,
the logical unit is compressed, and at time T6, the logical unit
again contains only compressed data, and is approximately
60% utilized.

Other conditions may trigger a compression or recompres-
sion. For example, at time T7, T8, and T9, the utilization of
the logical unit increases until, at T9, another trigger condi-
tion is met: more than 80% utilization of the logical unit. As
aresult ofthis capacity threshold trigger condition, the logical
unit is again compressed. At time T10, the logical unit again
contains only compressed data, and is approximately 70%
utilized.

When data that exists on the compressed logical unit is
modified, the system determines whether the data to be modi-
fied exists on the logical unit as compressed or uncompressed
data. If the data to be modified exists on the logical unit as
compressed data, the system may uncompress the data,
modify the uncompressed data, and write the modified data
back to the logical unit. Instead of writing the data back to the
logical unit in compressed form, the system writes the data
back to the logical unit in uncompressed form.

In one embodiment, if an entire chunk of compressed data
is overwritten, however, the compressed data is not decom-
pressed; instead, the new data may be written to the logical
unit, either overwriting compressed data currently stored
within the chunk with new, uncompressed data, or alterna-
tively, writing the uncompressed data to one or more new 8
KB mapping units, mapping the new 8 KB mapping units into

10

15

20

25

30

35

40

45

50

55

60

65

6

the MLU logical address space, and deallocating the 8 KB
mapping units that were formerly mapped to that same ML.U
logical address space so that the mapping units may be used to
store something else. This avoids the need to perform a
decompression and thus saves time and resources.

Time T11 and T12 illustrate how utilization may be
reduced. A portion of the compressed data may be deleted
from the logical unit. The location of the data to be deleted
must be located within the compressed data area, and that
portion of the compressed data must be decompressed, as
shown at time T11, before the data to be discarded can be
deleted, as shown by the reduced size of the uncompressed
data at time T12. Again, because lazy compression is imple-
mented, the undeleted portion of the uncompressed data is not
recompressed, and at time T13, additional data is written to
the logical unit.

FIG. 2 is block diagram illustrating an exemplary system
for lazy compression of data incoming to a data storage entity
according to an embodiment of the subject matter described
herein. Data storage system 200 includes a controller 202 for
communicating with one or more hosts 204 to read and write
datato one or more data storage devices 206, whose collective
data storage capacity is represented as data storage area 208.
In the embodiment illustrated in FIG. 2, data storage system
200 has N number of data storage devices, labeled D1 through
DN. Data storage devices 206 may include hard disk drives,
floppy disk drives, tape drives, FLASH drives, or any other
form of persistent storage. In one embodiment, data storage
devices 206 may be organized into redundant arrays of inex-
pensive disks (RAID) groups.

In one embodiment, the total data storage area 208 may be
divided into slices for allocation to one or more logical units,
or LUs. In the embodiment illustrated in FIG. 2, data storage
area 208 is divided into M number of 1 gigabyte (1 GB) slices.
In one embodiment, the pool of data storage devices 206 are
first divided into RAID groups, which are themselves divided
into several logical units each. 1 GB slices are provisioned
from those logical units.

In one embodiment, data storage system 200 supports
sparsely allocated logical units, also called thinly allocated
logical units (TLUs), in which slices are allocated to the
logical unit as needed, in contrast to fully allocated logical
units, in which all of the slices that the logical unit will ever
need based on its projected maximum size are allocated to the
logical unit at the time of its creation. In the embodiment
illustrated in FIG. 2, data storage system 200 supports
mapped logical units, or ML Us, in which the slices that are
allocated to the TLU are not necessarily contiguous within the
collective data storage area. For example, mapped MLU1 210
has been allocated two slices from data storage area 208—
namely, slice 4 and slice 1. MLU2 212 has been allocated
three slices from data storage areca 208—namely, slice 2, slice
9, and slice 6.

In one embodiment, each slice may be further subdivided
into portions that are allocated and mapped to the MLU as
needed. These portions of a slice are herein referred to as
“mapping allocation units”. In the embodiment illustrated in
FIG. 2, mapping allocation units are 8 KB in size, but other
sizes could also be used. In this scenario, slices are said to be
provisioned to an MLU, and portions of the slice are said to be
allocated to specific ranges of logical block addresses within
the MLU. In the embodiment illustrated in FIG. 2, the data
storage area represented by slices 4 and 1 are represented as
container 214, which is a data structure that allows the MLU
to be presented as a data storage area having a logical block
address space larger than the physical space that is actually
present. Container 214 maps the 8 KB mapping allocation

US 9,330,105 B1

7

units into the logical block address space of MLU1 210,
which is represented as element 216 in FIG. 2. Note that the
8K mapping allocation units need not be mapped into con-
tiguous logical block address spaces, and that the 8K mapping
allocation units may be allocated from any 1 GB slice. For
example, in the embodiment illustrated in FIG. 2, 8 KB map-
ping allocation units B, C, and D occupy contiguous portions
of the logical block address space of ML U1 210, but do not
occupy contiguous portions of slice 4 or slice 1. Moreover,
mapping allocation units B and C are allocated from slice 4
while mapping allocation unit D is allocated from slice 1.

In one embodiment, logical block address space 216 is
divided into compression domains, called “chunks”. As
stated above, the size of a chunk should be chosen as a
compromise between compression efficiency (which
increases with increasing chunk size) and system perfor-
mance (which decreases with increasing chunk size.) In one
embodiment, illustrated in FIG. 3, a chunk size of 64 KB is
chosen.

FIG. 3 illustrates an exemplary logical unit that has been
divided into compression domains, called chunks, according
to an embodiment of the subject matter described herein. In
FIG. 3, the storage space of MLLU1 210 is shown as presented
to a user, i.e., as logical block address space 216, which has
logical block addresses ranging from LBA 0 through LBA 7.
Logical block address space 216 is divided into multiple 64
KB chunks, labeled C1 through CL. Logical block addresses
S, T, U,V, andY represent address boundaries between the 64
KB blocks. Each chunk C1 through CL is treated as an inde-
pendent compression domain.

FIG. 3 illustrates three snapshots of the contents of a logi-
cal unit, such as MLLU1 210, that implements lazy compres-
sion according to an embodiment of the subject matter
described herein. Snapshot 300 shows the contents of ML U1
210 before compression. In this snapshot, each of chunks C1
through C4 contains uncompressed data. In this illustration,
chunk CL contains no data.

Snapshot 302 shows the contents of MLLU1 210 after com-
pression, showing that each of chunks C1 through C4 has
been compressed.

Snapshot 304 shows the contents of MLU1 210 after data
has been written to the second chunk, C2. A write to a logical
block address within C2 triggers data storage system 200 to
determine whether that chunk is currently compressed or not.
In the example illustrated in FIG. 3, chunk C2 has been
compressed. The data within chunk C2 is then decompressed
for reading or writing. In one embodiment, unused portions of
a chunk may be zero-filled upon decompression. For
example, in snapshot 300, only a portion of chunk C2 con-
tained data prior to compression, but in snapshot 304, the
formerly unused portion of chunk C2 has been zero filled.

If the chunk is to be read, the uncompressed data can be
read from chunk C2. If the chunk is to be written, the write
may proceed, e.g., by writing or modifying data within chunk
C2. After either a read or a write, the system does not neces-
sarily recompress the data within chunk C2. Instead, this
recompression will occur only when and if needed, according
to the principles of lazy compression described above with
regard to FIG. 1.

FIG. 41is ablock diagram illustrating a controller for imple-
menting an exemplary system for lazy compression of data
incoming to a data storage entity according to another
embodiment of the subject matter described herein. In the
embodiment illustrated in FIG. 4, controller 202 from FIG. 2
is shown in more detail. Controller 202 includes an interface
400 for receiving I/O requests from a host and for controlling
the storage devices within the system. Because interface 400

10

15

20

25

30

35

40

45

50

55

60

65

8

is often in a shape that resembles a physical C-shaped clamp,
interface 400 is colloquially referred to as “the C-clamp”
having an “upper arm” that handles communication to and
from the hosts and a “lower arm” that handles communication
to and from the hard disk drives or other storage devices.

In the embodiment illustrated in FIG. 4, controller 202
includes a compression manager 402, which is a collection of
interface routines to assist other components in interacting
with data that is stored in various data constructs, called
“objects”, which are used by controller 202. Controller 202
also includes a compression engine (CE) object 404, which is
an object representing the compression engine 406. CE object
404 is used to store global data relevant to compression, such
as the global pause/resume and compression/decompression/
recompression state. Compression engine 406 provides the
background service that is used to compress, decompress, or
recompress TL.Us and MLUs.

Controller 202 includes a mapped logical unit (MLU) man-
ager 408 for managing MLU objects 410, a mapping system
(MS) manager 412 for managing MS objects 414, a pool
manager 416 for managing pool objects 418 and RAID based
logical unit objects (also known as “Flare” logical units, or
FLUs) objects 420. An object manager 422 and state machine
manager 424 are used to track and maintain the various
objects (MLU, MS, pool, and FL.U objects, for example) used
by controller 202. A slice manager 426 is responsible for
allocation of'slices to logical units. In one embodiment, MLU
manager 408 handles the control path and provides support
forthe logic in the I/O path by providing access to control path
data.

A compression coordinator 428 processes host 1/O
requests that are received by the upper arm of C-clamp 400
and passed to compression coordinator 428, if compression is
turned on, or to I/O coordinator 430, if compression is turned
off. To service host I/O requests, compression coordinator
428, which is a component in the I/O path, will locate the
appropriate chunk(s) and coordinate with compression
engine 406 to decompress them if necessary.

1/0 coordinator 430 waits for compression coordinator 428
to indicate that the uncompressed data is ready before pro-
cessing the I/O request. I/O coordinator 430 sends write data
to the lower arm of C-clamp 400 for eventual storage within
data storage devices 206. /O coordinator passes data to a
mapping system 432. Mapping system 432 provides meta-
data to the lower arm of C-clamp 400.

In this manner, writes to a compressed chunk will result in
the entire chunk being read, decompressed and rewritten,
with the written data placed appropriately among the decom-
pressed data. When the write is complete, compression coor-
dinator 428 will deallocate the old compressed data. This
avoids placing a compression step in the I/O path, but results
in the LU becoming less compressed over time. To combat
this, compression engine 406 will periodically re-compress
the LU in response to a trigger condition.

Inthe embodiment illustrated in FI1G. 4, compression coor-
dinator 428 takes incoming I/O from both the C-clamp 400
upper arm and from compression engine 406, establishes the
internal data layout, and manages all sub-I/O necessary to
complete a given incoming 1/O request. In one embodiment,
compression coordinator 428 will arrange data in a special-
ized layout to ensure the availability ofalogical block address
range for both compressed and uncompressed data for any
given chunk. In one embodiment, compression engine 406 is
a throttled, pause-able background service that uses a com-
pression library to compress or decompress the data. In one
embodiment, at initialization, compression engine 406 may
start a number of work threads for performing the compres-

US 9,330,105 B1

9

sion, recompression, or decompression operations. When all
work threads are active, subsequent compression operations
will be queued within the compression engine 406.

In one embodiment, compression engine 406 will interact
with compression coordinator 430 to compress or decom-
press a chunk. Compression coordinator 430 will complete
the request and provide notification of the status, such as:
successful, out of space, out of other resources like chunk
buffers, or I/O error. If chunk compression fails, compression
engine 406 may simply proceed to the next chunk. If chunk
decompression fails, compression engine 406 may stop
decompression and log an error.

In one embodiment, compression engine 426 may monitor
compression engine object 406, which may indicate that a
TLU is subject to an initial compression, a recompression, a
decompression, etc. In one embodiment, initial compression
applies to every chunk in the TLU. During a recompression,
compression engine 426 may request a list of uncompressed
extents from compression coordinator 430. In one embodi-
ment, both initial compression and recompression will pro-
ceed in a forward fashion, updating a persistent status marker
after a predetermined number of chunks have been processed.
If a chunk behind the progress marker is decompressed to
service a host write, then that chunk will remain decom-
pressed until the next recompression pass.

During a compression, compression engine 426 may track
the amount of space it has saved. In one embodiment, if
compression engine 426 observes that it has recovered an
entire slice worth of data, compression engine 426 may signal
to MLU manager 412 that a slice evacuation is likely to be
successful. Alternatively, compression engine 426 may notity
MLU manager 412 any time the persistent progress marker is
updated, and MLU manager 412 may determine whether
evacuation is likely to succeed. Compression engine 426 may
also signal for evacuation at the end of every compression
pass in case the fractional savings are enough to free another
slice. MLU manager 412 may coalesce evacuation requests
and free as many slices as it discovers possible, which may be
zero. Upon completing a compression pass, compression
engine 426 may set the “last consumed capacity” in the cor-
responding MLU object 410.

In one embodiment, when work threads are idle, they may
periodically scan for MLU objects 410 which have compres-
sion activated to see if any MLUs have increased utilization
since the time ofthe ML U’s last compression operation. If so,
the thread may begin a recompression operation. For the
purposes of checking if recompression is needed, compres-
sion engine 426 may use an interface of MS manager 412 to
obtain the actual capacity consumed by mapping system 434.
This provides an accurate picture of storage used that is not
subject to the timing of the completion of slice evacuation
requests.

In one embodiment, a user of data storage system 200 may
set a value for compression and/or decompression rate, in
order to control how fast the compression or decompression
process operates or how many resources the process con-
sumes.

Direct mapped logical units, especially those that are
mapped to RAID arrays, such as Flare LUs (FLUs) cannot be
compressed directly, because there is no way to release stor-
age from the middle of a FLLU and return it to that logical
unit’s RAID group. One approach is to overcome this limita-
tion is to migrate the FLU to a thinly provisioned LU (TLU)
and then compress it.

FIGS. 5 and 6 are a flow charts illustrating exemplary
processes for lazy compression of data incoming to a data

20

25

35

40

45

55

65

10

storage entity according to another embodiment of the subject
matter described herein. Each of these two processes will now
be described in detail.

FIG. 5 is a flow chart illustrating a first portion of an
exemplary process for lazy compression of data incoming to
a data storage entity according to an embodiment of the
subject matter described herein. FIG. 5 describes how an 1/0
command, and especially an I/O write to a compressed logical
unit, is handled.

At block 500, a data storage system waits until an 1/O
command has been received. Example /O commands
include, but are not limited to, I/O read, in which data is read
from the data storage entity, and I/O write, in which data is
written to the data storage entity. For example, referring to
FIG. 2, controller 202 may receive an I/O command from host
204.Ifan /O command is received, the process flow moves to
block 502.

At block 502, the target of the /O command is identified.
For I/0O commands that are directed to a logical block, the
location of the logical block must be identified. Each logical
block is within a chunk, and thus the identity of the target
chunk is determined. For example, host 204 may issue an [/O
write to logical block address X (LBA X) of MLU1 210. As
shown in FIG. 2, LBA X is located within 8 KB mapping
allocation unit C, and as shown in FIG. 3, LBA X is located
within chunk C2. For the purpose of illustration, it is pre-
sumed for this example that the logical unit is compressed,
i.e., it is in the state shown in element 302 of FIG. 3.

At block 504, it is determined whether the I/O command is
a read or a write. If the I/O command is a write, the process
moves to block 506, where it is determined whether the write
data will completely overwrite the contents of the target
chunk, in which case it is unnecessary to first decompress the
target chunk, and the process flow moves directly to block
510, where the 1/0O command is performed on the target
chunk.

If, at block 504, it is determined that the I/O command is a
read, or if, at block 506, it is determined that not all of the
chunk will be overwritten by the write data, the process flow
moves to block 508, where the target chunk is uncompressed
in preparation for the read or partial write. Again using the
example illustrated in FIG. 3, in response to an I/O command
to LBA X, which is a portion of chunk C2, it is determined
that a write to LBA X does not overwrite all of the data within
C2. Chunk C2 data is therefore uncompressed (i.e., the logi-
cal unit goes from the state shown in element 302 of FIG. 3 to
the state shown in element 304 of FIG. 3.) The process then
moves to block 510 where the /O command is performed on
the target chunk.

FIG. 6 is a flow chart illustrating a second portion of an
exemplary process for lazy compression of data incoming to
a data storage entity according to an embodiment of the
subject matter described herein. FIG. 6 describes an embodi-
ment of the lazy compression process.

Referring to FIG. 6, at block 600, the process waits until a
trigger condition has been met. Example trigger conditions
include, but are not limited to, a change of utilization of a
volume, logical unit, or chunk. Upon detection of a trigger
condition, the process moves to block 602 in which the first of
potentially many chunks may be compressed.

In one embodiment, a compression may be triggered if the
amount of used data storage space increases (or the amount of
free space decreases) by a threshold amount or a threshold
percentage. For example, compress or recompression may be
triggered by one or more of these conditions: if utilization
reaches 10% or 10 GB, whichever comes first; if 5 GB of new
data has been written to a 50 GB TL U since last compression;

US 9,330,105 B1

11

if 10 GB of new data has been written to a 50 GB TLU since
last compression; etc. Other potential conditions which may
trigger a compression operation include a command to con-
vert an uncompressed logical unit to a compressed logical
unit, or even the detection of /O inactivity for a threshold
amount of time, e.g., a compression of data in preparation for
moving the data contents to archival storage. Furthermore,
multiple types of trigger conditions may be defined. For
example, there may be a set of system-level trigger conditions
that apply to all TLUs within system 200, and there may also
be LU-specific triggers that apply only to a particular TLU or
MLU.

At block 604, it is determined whether the selected chunk
is compressed. If the selected chunk is compressed, the pro-
cess flow returns to block 602 to select another chunk, until an
uncompressed chunk is found. If, at block 604, the selected
chunk is uncompressed, the process flow moves to block 606,
in which the selected chunk is compressed, and then to block
608.

Atblock 608, it is determined whether the logical unit has
been compressed enough. In one embodiment, once a com-
pression or recompression is triggered, the compression
operation continues until all chunks within the LU are com-
pressed; in this embodiment, a logical unit is not compressed
enough until all block have been compressed. In an alterna-
tive embodiment, a logical unit may be compressed until the
utilization of the logical unit has been shrunk to below a target
size. In this embodiment, a lazy compression may be very
lazy—e.g., it will compress only enough to shrink the utili-
zation of the logical unit to below a target compressed size
and then stop the compression process. Such an approach
may be useful in a system where resources are scarce or in
high demand, in which case the compression should continue
only as long as needed to guarantee a certain amount of free
space. In the embodiment illustrated in FIG. 6, if, at block
608, it is determined that the logical unit has been compressed
enough, the process flow returns to block 600, and the process
again waits for a trigger condition. If, at block 608, it is
determined that more compression is needed, the process
moves to block 610, which determines if there are more
chunks available. If so, the process returns to block 602, in
which the next chunk is selected for consideration. If, at block
610, there are no more chunks available, the process may
move to block 612, in which a warning is generated, e.g., to
notify the user or administrator of the system that compres-
sion was not successful to the desired degree.

In one embodiment, the logical unit is compressed one
chunk at a time. If the compression is triggered by a change of
the logical unit from an uncompressed type to a compressed
type, the chunks of the logical unit may be processed one by
one until all of the chunks are compressed. Alternatively,
chunks of the logical unit may be compressed until another
trigger condition, a condition that stops compression, is
detected. For example, chunks of a logical unit may be com-
pressed until the utilization of the logical unit meets a utili-
zation threshold, such as utilization below 60% (or alterna-
tively, free space above 40%). Compression may also be
stopped by a relative change threshold, such as detection that
the logical unit has reduced its size by a certain percentage.

In the embodiment illustrated in FIG. 6, there may be
continual monitoring for a trigger condition, but the subject
matter described herein is not intended to be so limited. In one
embodiment, the trigger condition may be checked for peri-
odically or in response to another operation, such as receipt
and processing of an 1/O, change of status of an LU, or other
conditions.

10

15

20

25

30

35

40

45

50

55

60

65

12

In one embodiment, the processes described in FIGS. 5 and
6 may be performed independently and in parallel. In another
embodiment, the process described in FIG. 6 may be trig-
gered by particular steps of the process described in FIG. 5.

The principles of lazy compression may likewise be
applied to decompression, i.e., to implement a “lazy decom-
pression” scheme. In systems that implement conventional
decompression, when a logical unit has been changed from
compressed type to decompressed type, all of the data on that
logical unit is subject to decompression, e.g., starting imme-
diately or starting when the opportunity arises and/or the
needed resources become available. In such conventional
systems, the intent is that all of the data on the logical unit or
volume will be decompressed, either immediately or eventu-
ally.

In contrast, “lazy” decompression occurs when a logical
unit has been changed from compressed type to uncom-
pressed type, but unlike the conventional decompression
described above, in one embodiment of lazy decompression
the compressed data is uncompressed only in response to
reading from or writing to a compressed portion of the logical
unit. If a compressed portion of a logical unit is not read from
or written to, that portion could theoretically remain com-
pressed indefinitely.

In one embodiment, lazy decompression is an additional
feature of a system that implements lazy compression. Since
lazy compression decompresses data when and if needed, and
provides a background process to compress or recompress
data in response to some trigger, another way to describe lazy
decompression is to say that lazy compression involves stop-
ping or pausing the background compression process for the
logical unit that is being lazily decompressed.

In another embodiment, lazy decompression may be
applied to a logical unit which has been subject to conven-
tional (i.e., non-lazy) compression. For example, a logical
unit that has been subject to conventional compression may
be fully compressed. If lazy decompression is then enabled
for that compressed logical unit, portions of the logical unit
may be uncompressed only when that portion is read from or
written to, and not recompressed after the read or write opera-
tion has been completed. Although a volume or logical unit
that is lazily decompressed may eventually contain no com-
pressed portions as a result of the read and write operations
that are applied to it, this is not guaranteed to occur. In con-
trast, for a volume that is subject to conventional decompres-
sion, it is intended that the conventionally decompressed
volume be completely decompressed. In other words, it is
virtually guaranteed that a conventionally decompressed vol-
ume be totally decompressed, barring any system failure or
other fault that prevents the task of decompressing all of the
logical unit from completing as intended.

FIG. 7 is a flow chart illustrating an exemplary process for
lazy decompression of a compressed portion of a data storage
entity according to an embodiment of the subject matter
described herein. In the flow chart illustrated in FIG. 7, the
portion of the data storage entity that is compressed is a
logical unit, but the subject matter described herein is not so
limited, and contemplates lazy decompression of a portion of
a logical unit, all or a portion of a volume, all or a portion of
a RAID group, etc.

Atblock 700, a logical unit that was formerly designated as
a compressed logical unit for storing compressed data is
designated as being subject to lazy decompression. For
example, the logical unit type may be changed from “com-
pressed” or “lazily compressed”, to “lazily decompressed”
type. In one embodiment, if the logical unit was previously
designated as being lazily compressed or subject to lazy com-

US 9,330,105 B1

13

pression, a background compression task would perform
compression when and if needed. In this embodiment, chang-
ing the logical unit type to lazily decompressed or subject to
lazy decompression would stop, halt, or suspend the back-
ground compression task for that logical unit.

At block 702, a command is received to read data from or
write data to a target portion of the logical unit. At block 704,
it is determined whether the target portion of the logical unit
is compressed, and if so, the process moves to block 706
where the target portion is decompressed and non-target por-
tions are not decompressed, and then to block 708 where the
command is performed on the now-uncompressed target por-
tion. If, at block 704, it is determined that the target portion is
not compressed, the process goes directly to block 708. From
block 708, the process returns to block 702 upon receipt of a
new command, and the processes continues indefinitely until
the logical unit type changes again. At no time are non-target
compressed portions, i.e., compressed portions of the logical
unit that are not the target of a read or write command,
decompressed. In one embodiment, there is no background
process for decompressing non-target portions (or, if the
background process exists, the background process is stopped
or paused indefinitely.)

It will be understood that various details of the subject
matter described herein may be changed without departing
from the scope of the subject matter described herein. Fur-
thermore, the foregoing description is for the purpose of
illustration only, and not for the purpose of limitation.

What is claimed is:
1. A method for lazy compression of data incoming to a
data storage entity, the method comprising:
in a data storage entity having a plurality of data storage
devices whose collective data storage capacity defines a
non-volatile data storage area, defining at least a portion
of the data storage area within the data storage entity as
a compressed logical unit occupying a predefined logi-
cal block address space and divided into a plurality of
chunks, wherein for each chunk, data may be stored in
compressed form or stored in uncompressed form and
later compressed and wherein each chunk comprises an
independent compression domain;
at a controller for receiving input/output requests from hosts
and for controlling the data storage devices:
receiving a command to write data to a logical block
address within the compressed logical unit, and, in
response to receiving the command to write data to
logical block address within the compressed logical
unit, identifying a target chunk within the compressed
logical unit corresponding to the logical block address,
determining whether data in the target chunk to be modi-
fied by the command exists on the logical unit as com-
pressed or uncompressed data, and if the data to be
modified exists on the logical unit as compressed data,
determining whether the data to be written to the target
chunk by the command will completely overwrite all of
the data in the target chunk, and if the data to be written
to the target chunk by the command will completely
overwrite all of the data in the target chunk, writing the
data to the target chunk without uncompressing the data
in the target chunk and if the data to be written to the
target chunk by the command will not completely over-
write the data in the target chunk uncompressing the data
in the target chunk, modifying the uncompressed data,
and writing the modified data to the target chunk of the
compressed logical unit in uncompressed form; and

5

25

30

40

45

55

14

monitoring for a trigger condition, and, upon detection of a
trigger condition, compressing uncompressed data
within the target chunk of the compressed logical unit.

2. The method of claim 1 wherein detection of a trigger
condition comprises detection of at least one of:

writing a threshold volume of data to the compressed logi-
cal unit;

increasing a volume of data within the compressed logical
unit by a threshold amount;

increasing the volume of data within the compressed logi-
cal unit to a threshold amount;

increasing a volume of data within the compressed logical
unit by a threshold percentage;

increasing the volume of data within the compressed logi-
cal unit to a threshold percentage;

a command to compress uncompressed data within the
compressed logical unit.

3. The method of claim 1 wherein each chunk comprises a
portion of the compressed logical unit having a range of
contiguous logical block addresses.

4. The method of claim 3 wherein each chunk is sixty-four
kilobytes in size.

5. The method of claim 1 wherein defining the at least a
portion of the data storage area within the data storage entity
as a compressed logical unit comprises defining at least a
portion of one of a hard disk drive, a floppy disk drive, a
non-volatile memory, and a FLASH drive as a compressed
logical unit.

6. The method of claim 1 wherein the monitoring for a
trigger condition, and, upon detection of a trigger condition,
compressing at least a portion of the uncompressed data
within the compressed logical unit is performed indepen-
dently of the receiving a command to write data to the com-
pressed logical unit, and, in response to receiving the com-
mand to write data to the compressed logical unit, writing the
data in uncompressed form.

7. The method of claim 1 wherein the compressing at least
a portion of the uncompressed data within the compressed
logical unit is performed at a specified rate.

8. A system for lazy compression of data incoming to a data
storage entity, the system comprising:

a plurality of data storage devices having non-volatile data
storage space for storing data, the collective data storage
space being divided into a plurality of slices for alloca-
tion to at least one logical unit, wherein at least one
logical unit is a compressed logical unit occupying a
predefined logical block address space and divided into
a plurality of chunks, wherein for each chunk, data may
be stored in compressed form or stored in uncompressed
form and later compressed and wherein each chunk
comprises an independent compression domain; and

a controller for receiving input/output requests from hosts
and for controlling the data storage devices, the control-
ler further including:

a first module for receiving a command to write data to
a logical block address within the compressed logical
unit, and, in response to receiving the command to
write data to the logical block address within the
compressed logical unit, identifying a target chunk
within the compressed logical unit corresponding to
the logical block address, determining whether data in
the target chunk to be modified by the command exists
on the logical unit as compressed or uncompressed
data, and if the data to be modified exists on the logical
unit as compressed data, determining whether the
data to be written to the target chunk by the command
will completely overwrite all of the data in the target

US 9,330,105 B1

15
chunk, and if the data to be written to the target chunk
by the command will completely overwrite all of the
data in the target chunk, writing the data to the target
chunk without uncompressing the data in the target
chunk and if the data to be written to the target chunk
by the command will not completely overwrite the
data in the target chunk, uncompressing the data,
modifying the uncompressed data, and writing the
data to the target chunk of the compressed logical unit
in uncompressed form; and
a second module for monitoring for a trigger condition,
and, upon detection of a trigger condition, compress-
ing uncompressed data within the target chunk of the
compressed logical unit.

9. The system of claim 8 wherein the trigger condition
comprises one of:

writing a threshold volume of data to the compressed logi-

cal unit;

increasing a volume of data within the compressed logical

unit by a threshold amount;

increasing the volume of data within the compressed logi-

cal unit to a threshold amount;

increasing a volume of data within the compressed logical

unit by a threshold percentage;

increasing the volume of data within the compressed logi-

cal unit to a threshold percentage; and

a command to compress uncompressed data within the

compressed logical unit.

10. The system of claim 8 wherein each chunk comprises a
range of logical block addresses within the compressed logi-
cal unit.

11. The system of claim 8 wherein each chunk is sixty-four
kilobytes in size.

12. The system of claim 8 wherein at least one of the
plurality of data storage devices comprises at least one of a
hard disk drive, a floppy disk drive, a non-volatile memory,
and a FLASH drive.

13. The system of claim 8 wherein at least some of the
plurality of data storage devices are organized into redundant
arrays of inexpensive disk (RAID) groups.

14. The system of claim 8 wherein at least some of the
plurality of slices for allocation to at least one logical unit are
organized into one of a sparsely allocated logical unit, a thinly
allocated logical unit (TLU), and a mapped logical unit
(MLU).

15. The system of claim 8 wherein the plurality of slices is
further subdivided into mapping allocation units for alloca-
tion to the logical units.

16. The system of claim 15 wherein the mapping allocation

10

15

20

25

30

35

40

45

units are mapped into the logical block address space of the 50

logical unit to which the mapping allocation units are allo-
cated.

17. The system of claim 15 wherein the mapping allocation
units are eight kilobytes in size.

16

18. The system of claim 8 wherein the second module
comprises a compression engine for compressing, decom-
pressing, and recompressing logical units.

19. The system of claim 8 wherein the second module
operates independently of the first module.

20. The system of claim 8 wherein the second module is
triggered by an operation of the first module.

21. The system of claim 8 wherein the second module is
configured to compress the uncompressed data within the
logical unit at a specified rate.

22. A non-transitory computer readable medium having
stored thereon executable instructions that when executed by
the processor of a computer control the computer to perform
steps comprising:

in a data storage entity having a plurality of data storage

devices whose collective data storage capacity defines a
non-volatile data storage area, defining at least a portion
of the data storage area within the data storage entity as
a compressed logical unit occupying a predefined logi-
cal block address space and divided into a plurality of
chunks, wherein for each chunk, data may be stored in
compressed form or stored in uncompressed form and
later compressed and wherein each chunk comprises an
independent compression domain;

at a controller for receiving input/output requests from hosts

and for controlling the data storage devices:

receiving a command to write data to a logical block

address within the compressed logical unit, and, in
response to receiving the command to write data to
logical block address within the compressed logical
unit, identifying a target chunk within the compressed
logical unit corresponding to the logical block address,
determining whether data in the target chunk to be modi-
fied by the command exists on the logical unit as com-
pressed or uncompressed data, and if the data to be
modified exists on the logical unit as compressed data,
determining whether the data to be written to the target
chunk by the command will completely overwrite all of
the data in the target chunk, and if the data to be written
to the target chunk by the command will completely
overwrite all of the data in the target chunk, writing the
data to the target chunk without uncompressing the data
in the target chunk and if the data to be written to the
target chunk by the command will not completely over-
write the data in the target chunk, uncompressing the
data in the target chunk, modifying the uncompressed
data, and writing the modified data to the target chunk of
the compressed logical unit in uncompressed form; and
monitoring for a trigger condition, and, upon detection of a
trigger condition, compressing uncompressed data
within the target chunk of the compressed logical unit.

#* #* #* #* #*

